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Introduction

• The goal of the talk is to provide beneficial portability insights. These 
insights are derived from our effort to develop a performance portable 
molecular dynamics (MD) library.

• Targeted platforms: 

– CUDA HPC architectures

• ORNL’s Summit - IBM POWER9 and NVIDIA Volta GPUs

– Later will target Intel Xeon Phi HPC architectures

• Argonne’s Aurora - 3rd Generation Intel Xeon Phi

– What about future HPC architectures?
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What is a Performance Portable Algorithm?

• Achieves “acceptable” performance across a variety of HPC 
architectures

• Requires “minor” modifications when porting to novel HPC 
architectures

• Design characteristics

– A consistent, unified front-end interface for the computational scientist to 
use 

– Machine-level specifics and optimizations are contained in back-end to 
facilitate retargeting new architectures
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The Molecular Dynamics Algorithm: 

Given a system on N atoms with 
positions r1, r2, …, rN and an 
interacting potential V. 

𝑹(𝒕) = 𝒓𝟏(𝒕), 𝒓𝟐(𝒕),⋯ , 𝒓𝑵(𝒕)

𝑽 𝑹 𝑭𝒊(𝒕) = −
𝝏

𝝏𝒓𝒊
𝑽(𝑹(𝒕))

𝒙

𝒚

𝒛

𝒓𝟏

𝒓𝟐

𝒓𝑵

𝓞

Calculate the forces at 
time t

𝑹(𝒕) = 𝒓𝟏(𝒕), 𝒓𝟐(𝒕),⋯ , 𝒓𝑵(𝒕)

𝑭𝒊(𝒕) = −
𝝏

𝝏𝒓𝒊
𝑽(𝑹(𝒕))

Given an starting 
configuration R(t) at 
time t

• Integrate to solve for 
R(t+t)

• Calculate the relevant 
properties at time t+t

• t+t  t , R(t+t)  R(t), 
etc.

• Repeat

This step is ~80% 
of the total 
computational time

Algorithmic Steps

𝒓𝑵 𝒕 + ∆𝒕 ≈

𝟐𝒓𝑵 𝒕 − 𝒓𝑵 𝒕 − ∆𝒕 +
∆𝒕𝟐

𝒎𝑵
𝑭𝑵 𝒕
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Molecular Dynamics: Non-bonded-Forces Calculation is 
the Bottleneck

• Long-range electrostatic interactions 
forces 

– Limited by scaling of the FFTW in the PME 
calculation

– Solution: Implement a performance portable 
long-range electrostatic solver library (Multilevel 
Summation Method)

• Short-range 2 body (pair-wise) forces 

– Computational complexity is O(N) where N is 
the number of atoms

– Solution: Implement a performance portable 
short range force solver for the Lennard-Jones 
particle interactions



6 Presentation name

Preliminaries - What can I realistically do with my 
given resources?

• One has performance profiled the application with near as close to 
production status.

– Discover computational bottlenecks

– Discover the dominant data structures within these computational bottlenecks

– Is the application even suitable for acceleration?
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Nonexisting Code

• We choose to write our libraries in C and C++

– Provides the best chance of compiling and running on many operating 
systems using various compilers 

– Used a portable subset of C/C++

• Used C/C++ subset that works well with compiler directive-based accelerator kernels

• Avoided exotic and experimental features of C/C++

– Allows for a long-term conversation with the computer science community

• Profilers, debuggers, and other development tools
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Library API? 

• Spatial Decomposition

– Electrostatic Solver

• Input atom charges and positions

• Returns forces

– Nonbonded interactions

• Much more difficult

– Atom positions, interaction parameters, 
excluded interactions, modified interactions, 
etc.

– Trying to replicate ease of use like 
FFTW library 
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Separate the Interface and the Implementation

Direct Algorithmic Step Data Structures

HPC Compute Device
(Summit GPUs)

Accelerator 
Device

Accelerator Device Wrapper

Direct Kernel

Q – simple array of 
charges on CPU 

R – simple array of 
atomic positions 
on CPU

Data structures on CPU

The Accelerator 
Device is C++ Class 
allocated on the 
device which 
performs the 
computation on HPC 
compute device

R – Positions on device

Q - Charges on device

The Accelerator Device 
Wrapper is actually an API 
between the CPU and 
Accelerator Device
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Accelerator Device

• Accelerator device abstracts the programming model

– Hand written CUDA kernels

– In the future, KOKKOS, RAJA

– 10 years from now, who knows. I just have to satisfy the accelerator device 
API 

• Do’s for CUDA kernels

– Simple 1D contiguous arrays whose shapes and sizes are mostly known at 
compile time – elemental data types

– Classes and structures that contain simple elemental data types

– Aligned and coalesced accesses

– Minimize the data transfers between CPU and GPU. It is oppressive!

• Don’ts for CUDA kernels

– Data structures that involve pointer chasing (e.g. linked lists)
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Summary

• Profile application a close to production status as possible

• Separation of algorithm interface from its implementation

– Program to an interface, not an implementation

• If coding goals and resources permit, try using an accelerated library 
or OpenACC

– Other alternatives are KOKKOS, RAJA, etc.

• Avoid exotic data types

– Simple plain old data
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Additional Slides



14 Presentation name

Existing Code

• Try an accelerated CUDA library

– One may need to restructure data to a form amenable to the library

• Try a directive based approach like OpenACC

– One may need to restructure data to a form amenable to the GPU execution 
model

• Be forewarned!

– Data restructuring may then become the new bottleneck

– Strongly advise significant code refactorization with respect to its data 
structures

• Generally results in better CPU performance too

– Be aware of data reuse on the GPU to minimize CPUGPU transfer costs
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Overview of GPU Programming Model

CUDA thread

Thread block

Grid

CUDA core

CUDA device

Streaming 
Multiprocessor (SM)

0 1 N-1

float y = input_array[threadId];
float area = y*y;
output_array[threadID] = area;

…

The threads within a thread block 
are grouped in execution units of 32
threads called a warp – single 
instruction multiple data (SIMD)

…

Warp of
32 threads

Warp of
32 threads

…

CUDA kernel



16 Presentation name

The Molecular Dynamics Algorithm: 

Given a system on N atoms with 
positions r1, r2, …, rN and an 
interacting potential V. 

𝑹(𝒕) = 𝒓𝟏(𝒕), 𝒓𝟐(𝒕),⋯ , 𝒓𝑵(𝒕)

𝑽 𝑹 𝑭𝒊(𝒕) = −
𝝏

𝝏𝒓𝒊
𝑽(𝑹(𝒕))

𝒙

𝒚

𝒛

𝒓𝟏

𝒓𝟐

𝒓𝑵

𝓞

𝒎𝟐

𝒅𝟐

𝒅𝒕𝟐
𝒓𝟐 = 𝑭𝟐

𝒎𝟏

𝒅𝟐

𝒅𝒕𝟐
𝒓𝟏 = 𝑭𝟏

𝒎𝑵

𝒅𝟐

𝒅𝒕𝟐
𝒓𝑵 = 𝑭𝑵

.

.

.

𝒓𝟏 𝒕 + ∆𝒕 ≈ 𝟐𝒓𝟏 𝒕 − 𝒓𝟏 𝒕 − ∆𝒕 +
∆𝒕𝟐

𝒎𝟏
𝑭𝟏 𝒕

𝒓𝟐 𝒕 + ∆𝒕 ≈ 𝟐𝒓𝟐 𝒕 − 𝒓𝟐 𝒕 − ∆𝒕 +
∆𝒕𝟐

𝒎𝟐
𝑭𝟐 𝒕

𝒓𝑵 𝒕 + ∆𝒕 ≈ 𝟐𝒓𝑵 𝒕 − 𝒓𝑵 𝒕 − ∆𝒕 +
∆𝒕𝟐

𝒎𝑵
𝑭𝑵 𝒕

.

.

.

Integrate Newton’s law (by 
finite difference methods) Equations of motion
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GPU Programming Data Structures/Algorithm Major 
Requirements

• Minimize the data transfers between CPU and GPU. It is oppressive!

• Memory Accesses Need To Be Aligned! 

• Memory Accesses Need To Be Contiguous!
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What about Compiling?

• How do we plan to ensure that one can compile a reasonably 
performant code across various HPC architectures?
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Separate the Interface and the Implementation

Direct Algorithmic Step Data Structures

HPC Compute Device
(Summit GPUs)

Accelerator 
Device

Accelerator Device Wrapper

Direct Kernel

Q – simple array of 
charges on CPU 

R – simple array of 
atomic positions 
on CPU

Data structures on CPU

The Accelerator 
Device contains a 
class, KLP, that 
controls the various 
parameters that 
control the kernel’s 
performance.

KLP – Kernel Launch 
Parameters

The Accelerator Device 
Wrapper is actually an API 
between the CPU and 
Accelerator Device


